## One-pot Synthesis of 2, 5-Disubstituted Oxazoles Using Poly[styrene(iodosodiacetate)]

Jiang Min CHEN, Lu Ling WU, Xian HUANG\*

Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028

**Abstract:** 2, 5-Disubstituted oxazoles were prepared conveniently by treatment of aromatic  $\alpha$ -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.

Keywords: Poly[styrene(iodosodiacetate)], one-pot synthesis, 2, 5-disubstituted oxazoles.

Polymer-supported organic reagents have been rapidly applied to the preparation of small organic molecules<sup>1</sup>. Recently, polymer-supported hypervalent iodine compounds are increasingly used in organic synthesis and in the pharmaceutical industries as environmentally friendly reagents with their versatile reactivity. Among them, poly[styrene(iodosodiacetate)] is most widely used as a mild and clean oxidant<sup>2</sup>.

Oxazole derivatives have attracted attention because of their potential biological activity<sup>3</sup>. Herein, we report a convenient method for the conversion of aromatic  $\alpha$ -methyl ketones to oxazoles using poly[styrene(iodosodiacetate)] in one-pot process with outstanding advantages of easy operations, high yields, and environmental benign characteristics compared with the same reaction carried out in solution conditions<sup>4</sup>.

The synthesis of oxazole derivatives was simply carried out by stirring a mixture of resin (2.0 mmol) with the aromatic  $\alpha$ -methyl ketones **1** (1.0 mmol) and nitriles **2** (1.0 mmol) in the presence of trifluoromethanesulfonic acid in dichloromethane and refluxed for 5 h (**Scheme 1**). The results are summarized in **Table 1**. The resin could be regenerated and reused<sup>5</sup> (**Scheme 1**).

Scheme 1



<sup>\*</sup>E-mail: huangx@mail.hz.zj.cn

## Jiang Min CHEN et al.

| Entry | Ar                                               | R               | Yield <sup>a</sup> | Entry | Ar                                                | R                 | Yield <sup>a</sup> (%) |
|-------|--------------------------------------------------|-----------------|--------------------|-------|---------------------------------------------------|-------------------|------------------------|
|       |                                                  |                 | (%)                |       |                                                   |                   |                        |
| 1     | C <sub>6</sub> H <sub>5</sub>                    | CH <sub>3</sub> | 93                 | 6     | 2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub> | CH <sub>3</sub>   | 83                     |
| 2     | $4-ClC_6H_4$                                     | $CH_3$          | 89                 | 7     | $C_6H_5$                                          | $CH_3OCH_2$       | 78                     |
| 3     | $4-BrC_6H_4$                                     | $CH_3$          | 87                 | 8     | $C_6H_5$                                          | ClCH <sub>2</sub> | 83                     |
| 4     | 4-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>  | CH <sub>3</sub> | 90                 | 9     | C <sub>6</sub> H <sub>5</sub>                     | CH <sub>3</sub>   | 92 <sup>b</sup>        |
| 5     | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | CH <sub>3</sub> | 92                 |       |                                                   |                   |                        |

 Table 1
 Synthesis of 2, 5-disubstituted oxazoles

a. The yields are based on the aromatic  $\alpha$ -methyl ketones. b. Using regenerated resin.

We have developed a convenient method to prepare oxazole derivatives with poly[styrene(iodosodiacetate)]. The reaction is easily operated and environmental benign. And also the poly[styrene(iodosodiacetate)] can be regenerated and reused.

## Acknowledgment

Project 29932020 was supported by the National Natural Science Foundation of China.

## References

- F. Guillier, D. Orain, M. Bradley, *Chem. Rev.*, **2000**, *100*, 137.
  H. Togo, K. Sakuratani, *Synlett*, **2002**, 1966. 1.
- 2.
- 3. P. Wipf, Chem. Rev., 1995, 95, 2115.
- R. S. Varma, D. Kumar, J. Heterocyclic Chem., 1998, 35, 1533 4.
- 5. X. Huang, Q. Zhu, J. Chem. Research (s), 2000, 300.

Received 20 January, 2003